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S T E A D Y - S T A T E  V E R T I C A L  T H E R M O E L A S T I C  

O S C I L L A T I O N S  I N  A S Y S T E M  O F  T W O  P L A N E -  

P A R A L L E L  L A Y E R S  W I T H  F R I C T I O N  H E A T  
G E N E R A T I O N  

D. V. Grilitskii and P. P. Krasnyuk UDC 539.3 

ICe present a mathematical  statement and construct a solution for  the problem of  thermoelasticity in contact 

interaction between two plane-parallel layers under the action o f  external loading periodically varying with 
time. 

The problem of static thermoelasticity in contact interaction between two plane-parallel layers uniformly 

pressed normally against the contact plane with allowance for heat generation and abrasive wear was investigated 
in [1, 2]. 

Below we will consider a dynamic contact problem of thermoelasticity for determining steady-state vertical 

thermoelastic oscillations and temperature fields in a system of two plane-parallel layers exposed to a harmonic 

normal load (Fig. I). In this case we take into account heat generation in the contact plane of the layers under the 

action of friction forces obeying Amonton's law. 

Suppose we have a packet of two plane-parallel layers. The lower plane of the packet is rigidly fastened 

and a pressing load q = qo + ql exp (-WQ (0 < ql < q0) is applied to the upper plane. The weight of the layers 
will be taken into account. 

We assume that the upper layer moves over the surface of the lower layer with a constant small velocity v 0 
in the direction of the z-axis. It is assumed that heat generation occurs in the contact plane of the layers, the 

thermal contact of the bodies is nonideal, and that heat exchange between the external planes of the layers and 

the surrounding medium (whose temperature is taken to be equal to zero) follows the Newton law. 

We will determine temperature fields, heat fluxes, thermoelastic displacements and stresses in the two- 
layer packet. 

In the given statement of the problem the temperature tp displacement Vj and stress o O) (] = 1, 2) will be 

functions of the coordinate y and time z. The problem is reduced to solving a system of equations: 

2 t (1) 

2 - 2  2 (2 )  

crOy] = rlj (Oy Vj - ~/ t/) , j =  1 , 2 ,  

under the following boundary and contact conditions: 

y - - h l :  Oy tl = Yl t 1, Vl = 0 ;  

(3) 

(4) 

y = h 2 : Oy t 2 = - Y2 t2, cr~ 2) = - qo - ql exp ( -  /vT) ; (5) 
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Fig. 1. Diagram of problem of contact interaction between two plane-parallel 
layers. 

y = 0 : 21 Oy t I - 22 Oy t 2 = f v  0 (h2P 2 g + Po + Pl exp ( - / v ' r ) )  ; (6) 

21 Oyt 1 + 2 2 0 y t  2 + h ( t  1 - t2) = 0 ;  (7) 

where 

a(l) = o'(2) = -- (h2P2 g + PO + Pl exp ( -  &-r)), V l = V2, (8 )  

fly = a / (1  + vj) (1 - 1,/) -1 ; rQ = Ej (1 - vj) ((1 + vi) (1 - 2vy)) -1 , 

c .j = rj  = i = l ,  2 .  ( 9 )  

Considering the linearity of the initial equations, boundary and contact conditions, we present  the desired 
solution of the problem in the form of a sum of two terms: 

tj (y, r) = ~ (y) + ~ (y) exp (-- / ~ ) ,  

V] (y, r) = V/(y) + Vi (Y) exp ( -  /vr) ,  

ay O) (y, r) = ~r (i) (y) + (~(i) (y) exp ( -  h,'r), f = 1, 2 .  

(10) 

Substituting relations (10) into Eqs. (1), (2), and (3), satisfying conditions (4)-(8),  and  equating the 
expressions at exp (-/vw), we obtain two boundary-value problems for determining the components of solution 
(10), which are  not given here. 

The solution of the first boundary-value problem concerning the contact interaction of layers with allowance 
for their  proper weight and steady-state  heat generation is represented by the relations 

7]= A]y + B],  -V]=O.S y2 (15]A] + p ] g r l T l )  + c f f  + D], 

~rOy 3 = - qo - P2 g h2 + P] gY , ] =  1 , 2 ;  

(11) 

Aj = ( -  l) ]-1 f v  0 (h2p 2 g + PO) el31 a3--j' B] = (-- 1) j-1 Aj (h] + ~,}-l), 

aj = 2j + h (hj + yj-1) , a 3 =21 a x + 2 2 a  1, 
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-I ,Z 1 (12) C j = - r / . /  ( h 2 P 2 g  + po) + f l j B j ,  D j =  CIh  I - 0.5 n I (fllal + pl  g r l l  ) ,  

in which the component of the contact pressure P0 is equal to that of the external load q0. 

A simple analysis of Eqs. (10) and (1) shows that the temperature, and, as a result, thermoelastic 
displacements and stresses of the second boundary-value problem, will be complex functions of a real argument. 
Introducing the complex parameter Aj = x/-wk} -1, we obtain the following expressions for determining the 
temperature of the layers ~i(y): 

~j (Y) ----- _ fvoPll_i31H3_] A/COS ( A / ( h i  --- y))  -t- y/sin (A / (h / •  y)) 
A 1 sin (A/hj) - yj cos (Aj hi) ' 

( 1 3 )  

where 

A/COS (A /h i )  + y / s i n  (A/hi)  . H3 = ~ I A 1 H 2  + 22A2H1 ; 
H / =  ~] Aj -- h A / s i n  (A]  hi)  - y / c o s  (A] h i ) '  

the upper sign in the combination • corresponds to the value i = 1 and the lower to ] -- 2. 
The thermoelastic displacements and stresses take the form: 

-1  = - I  -1  
I~ 1 (y) = -- (PlCt , l  (w/ t )  - I  -- VCl,lelt t (0))  s in  (Vr 1 (h 1 + y))  cos  -1  (VCl,lhl) + 

- - 1  - 1  
+ e 1 (dy71 (y) - ay71 ( -  h i )  cos (VCl,lY) cos -1 (VCl,lhl)) ; (14) 

-- - 1  = -1  - 1  
V2 (Y) ---- -- (PlCl,2 (v'q2) -1  VCl,2e2l 2 (0))  cos (VCl, 2 (h  E - y))  sin - t  (VCl,2h2) + 

--l --1 r 2dy72 (y) + (qlCl ,2  (~r]2) -1  -- VCl_12 e272 (h2))  cos (VCl,2Y) s in  -1  (VCl,2h2) + 

-1  
~ry (I) (Y) = -- Pl COS (Vcl_ll (h I + y)) cos -I (VCl,lhl) + 

-1  2 - I  -1  
+ r/1 (VCI,I) e I (71 (0) COS (VCl, 1 (h  1 + y))  cos  -1  (VCl,lhl) - 71 (y)) + 

-1  -1  -1  
+ rllVCl,le 1 d~ l  ( -  hi) sin (VCl,lY) cos - I  (VCl,lhl) ; (15) 

~ry ( - I  -1  1 -1  
2) (y) = _ (ql  s i n ( r e  1,2y) + Pt s i n ( r e  1 , 2 ( h 2 -  Y))) s i n -  (vc 1,2h2) + 

-1  2 -1  -1  -1  
+ r12 (VC1,2) e2 ( [ 72 (h2) s in  (vc 1,2Y) + 72 (0) s in  (vc 1,2 (h2 Y)) l s i n -  1 -- ( v q , 2 h 2 )  - 7 2 ( y ) ) ,  

2 - 2  2 -1  where ej = flj(v c l d ,  - A~) . 
The unknown component of the contact pressure Pl is determined from the condition of the equality of 

thermoelastic displacements on the contact plane. Using expressions (14), we obtain a formula for defining PI: 

-1  -1  -1  -1  
PI COS (VCl,lhl) COS (VCl,2h2) - r/2Cl, 1 (r/lCl,2) -1  s in  (VCl,lhl) s in  (VCl,2h2) + 

-1  -1  =* -1  -1  
+ fVovCl,2rl2 [VCl,lelt 1 (0)  s in  (VCl,lhl) sin (VCl,2h2) - 

-1  =* -1  --1 
-- VCl,2e2t 2 (0)  cos (VCl, lhl)  cos (VCl,2h2) + (e ldy7  ? (0)  - 
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Fig. 2. T ime-dependence  of heat flux for four values of distance from contact 

plane (v =~r /6  s ec - l ) :  1) y = 0 ,  2) _0.01 m, 3) ___0.02 m, 4) _+0.05-0.1 m. 
q, kW/m2; r, sec. 

Fig. 3. T ime-dependence  of t empera ture  for two values of distance from 

contact  plane (v = ~r/6 sec-1) :  l) y = 0, 2) y -- _+0.01 m (dashed lines 

correspond to the temperature  of the s tat ionary problem),  t, ~ 

,y 

=* - 1  - 1  - - I  
- e2dyt 2 (0)) cos (vq , lh l )  sin (VCl,2h2) - eld~l* ( -  hi)  sin (VCl,2h2) + 

-1 = ,  ~11 } - I  (16) + VCl,2e2t 2 (h2) cos (vc h l ) ]  = ql cos (vCl,lhl) ,  

temperature  layers by in which the functions ~j*(y) are related to the of the -~i(Y) the relation tj (y) = fvoPl tj (y). 
Since the parameter  ej is complex and ~*(y) is a complex function of a real argument ,  the component  of the contact 

pressure Pl will also be complex: Pl = Pl 1) + iPt 2). 
Initial problem (1)-(8) is finally determined from formulas (10), in which the solution of the second bound-  

ary-value problem is represented by complex functions of a real argument .  

In order  to calculate the temperature  fields, thermoelastic displacements and stresses, one must use the 

real parts  of express ions  (10). This  corresponds  to a change in the external  load according to the law q = 

q0 + ql COS (v'r) (0 < ql < q0)- 
A numerical  analysis of the problem is carried out for a steel-steel  friction pair (Ej = 2.06- 105 MPa, vj -- 

0.28, PI -- 7.8-103 kg /m 3, 2.i = 47 W / ( m . K ) ,  kj = 0.1295.10 -4  m2/sec,  cti = 11.7.10 -6  K -1) and for the values of 

the main parameters:  q0 = 0.4 MPa, ql = 0.2 MPa, h - 10 k W / ( m 2 . K ) ,  g = 9.81 m/sec  2, f =  0.25, vo = 3 m/sec ,  Yl 

=) '2 = 20 m -1,  hi = h2 = 0.1 m, v = 0 .0001-1000  sec -1 

A numerical  analysis of the solution makes it possible to conclude that the imaginary part  pt 2) of the 

component  of the contact pressure Pl can be neglected and it may be assumed that Pl = Pt 1) = ql. In this case the 

ay 0) in the system are invariable over the packet thickness and are equal to the component  ql of the stresses 

external  load. 

The  analytical  expressions obtained and the analysis of the numerical  results show that heat  generat ion 

as well as the distribution of temperature  and heat flux in the two-layer  system considered have a fluctuational 

character.  The  fluctuations a t tenuate  with distance from the contact plane. Graphs of the variations in time of the 

heat flux at v = zr /6  sec -1 are given in Fig. 2, where curve 4 corresponds to the heat flux of s ta t ionary  problem 

(11)-(12).  A decrease in the frequency v slows down this at tenuation,  but when the frequency decreases  consider-  

ably, oscillations of the heat flux appear,  which are independent  of the coordinate y and have the f requency of the 

external  load. 

The  tempera ture  fluctuations lag in phase from changes in the heat flux. Graphs of the tempera ture  

distribution are depicted in Fig. 3. As the frequency v increases, the fluctuation amplitude of the tempera ture  

decreases at a fixed coordinate y. A decrease in v decreases the phase shift between fluctuations of the heat  flux 

and temperature ,  and increases the temperature  amplitude. 
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Heat generation also causes a phase shift between fluctuatio,~ of vertical displacements and stresses. This 

shift decreases with a decrease in the frequency v. The amplitude of the change in displacement, being maximum 

on the loaded surface, decreases with an increase of the parameter v, and already at v = at/6 sec-l  the thermoelastic 

fluctuations of the displacement can be neglected. 

Effects similar to those considered above are observed with a change in the thermal diffusivity parameter. 

An increase in k] causes the same effects that are manifested with a decrease in the fluctuation frequency v. As we 

know, in nonstationary problems of heat conduction an increase in the thermal diffusivity parameter decreases the 

time needed for the temperature to attain a stationary value. In the given problem a decrease in the frequency v 

increases the residence time of the system in a "stationary" state, which is characterized by relative constancy of 

the external load. Thermoelastic oscillations of the system can be considered in this case as transition from one 

thermoelastic stationary state to another, which is characterized by relatively constant loads. 

N O T A T I O N  

q -- q0 + ql exp (-/vT), external pressure; p -- P0 + Pl exp (/vz), contact pressure; v, frequency of 
fluctuations of the external load; r, time; tj, j = l, 2, temperature; Vj, j = l, 2, displacement; O~y), j -- 1, 2, stress; 

y, spatial coordinate; v0, velocity; g, free fall acceleration; h, thermal conductivity of the contact plane; f, friction 

coefficient; hi, j -- 1, 2, thickness of the layers; py, j = 1, 2, density; Ej, j = 1, 2, Young modulus; v], a/, ~], 2j, k/, 
j = 1, 2, coefficients of Poisson, linear temperature expansion, heat transfer, thermal conductivity and of thermal 

diffusivity; ct j ,  j - -  1, 2, speed of propagation of longitudinal waves. 
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